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Abstract

A Methodology to Design Pipelined Simulated Annealing Kernel Accelerators on

Space-borne FPGAs

by

Jeffrey Michael Carver, Master of Science

Utah State University, 2009

Major Professor: Dr. Aravind Dasu
Department: Electrical and Computer Engineering

Increased levels of science objectives expected from spacecraft systems necessitate the ability

to carry out fast on-board autonomous mission planning and scheduling. Heterogeneous

radiation hardened Field Programmable Gate Arrays (FPGAs) with embedded multiplier

and memory modules are well suited to support the acceleration of scheduling algorithms.

A methodology to design circuits specifically to accelerate Simulated Annealing Kernels

(SAKs) in event scheduling algorithms is shown. The main contribution of this thesis is

the low complexity heuristic mapping algorithm used to balance resource allocation across

a coarse grained pipelined data-path. The methodology was exercised over various kernels

with different cost functions and problem sizes. These test cases were benchedmarked for

execution time, resource usage, power, and energy on a Xilinx Virtex 4 LX QR 200 FPGA

and a BAE RAD 750 microprocessor.

(49 pages)
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Chapter 1

Introduction

It is expected that in the future spacecrafts/rovers will have a set of tasks or events,

that need to be completed subject to some constraints such as time, energy, etc. These tasks

may depend upon each other and/or may compete for limited resources. For example, a

complex sequence of thruster firings and robotic arm maneuvers might be necessary to grasp

a passing object, without violating known types of dependencies. Such a problem can be

modeled as a dependency graph violation (DGV) removal problem. A second example could

be to determine the least number and types of robots (in a swarm with different sensors)

necessary to explore a terrain. Such a problem can be interpreted and solved as swarm-

based graph coloring (GC) problem. A third example could be a plan to visit a specific set

of sites of scientific interest by a rover in the best order possible to minimize total distance

travelled hence minimizing expenditure of energy in the batteries. Such a problem can be

modeled as traveling salesperson (TSP) problem.

Such scheduling or planning problems necessary for autonomous space exploration can

be solved through techniques like simulated annealing (SA). For instance the Generalized

Robotic Autonomous Mobile Mission Planning System (GRAMMPS) [1] uses a Simulated

Annealing Kernel (SAK) for path planning. [2] presents a SA algorithm for path planning in

multiple robot systems. [3] proposes and explores the need for SA based Schedulers in future

space robotic applications. [4] describes a SA based technique for optimizing trajectories

of spacecraft driven by propulsion systems that generate low thrusts, subject to the goals

of minimizing fuel and time spent. [5] discusses the benefits of using SA techniques for

spacecraft event scheduling.

Software descriptions of classic SA algorithms are sequential, and not directly well

suited for acceleration on parallel computing platforms like FPGAs. However, if carefully
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modified, these algorithms can be converted into pipelined versions, allowing for multiple

solutions to be evaluated simultaneously. Such altered and valid forms of SAKs, henceforth

termed as pSAKs, can be accelerated considerably on FPGAs if the underlying micro archi-

tectures of data paths, memory, and control sub-systems are appropriately designed. This

paper presents the methodology to design pSAK accelerator circuits on FPGAs through

the use of (i) a hardware template to aid architecture exploration, (ii) scheduling and map-

ping (binding) algorithms to balance resource allocation across the coarse grained pipelined

data-path, and (iii) a method to calculate the relative weight of components implemented

on heterogeneous FPGAs.

The rest of the paper is organized as follows: chapter 2 reviews the literature on tem-

plate based architecture exploration techniques, high level synthesis algorithms for schedul-

ing and mapping, and techniques to mitigate the effects of SEUs on FPGAs. In chapter 3

the hardware architecture template for accelerating pSAKs is presented along with details

on the parameters, memory banks, and memory multiplexing used in the architecture. In

chapter 4 the semi-automated architecture derivation methodology (tool flow) is discussed.

Chapter 5 presents the results results obtained by exercising this methodology over var-

ious kernels with differnet cost functions and problem sizes. The paper is concluded by

summarizing the major contribution of this thesis.
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Chapter 2

Background

While there are several publications that describe the advantages of template based de-

sign space exploration, a subset of papers is reviewed in this section. [6] presents architecture

exploration for a reconfigurable architecture template. Architectures can be composed of

either a homogeneous set of functional units (FUs) or a combination of multipliers and FUs,

with various options for interconnections among them. Their architecture exploration uses a

combination of modulo scheduling and SA techniques. [7] take the approach of exploration

of architectures, by specifically looking at pipelined and programmable microprocessors.

They allow designers to describe microprocessor architecture in terms of a graph whose

nodes represent FUs, registers, ports, and buses. The authors carry out resource con-

strained scheduling (RCS) where, the designer must specify the number of FUs available of

each operation type. [8] describe the automated mapping of coarse-grained pipelined appli-

cations onto FPGA systems. They carry out selective loop unrolling across pipeline stages

to balance latencies. Their explorer takes a greedy approach to perform inter-pipeline opti-

mization. [9] describes the design space exploration of stream based dataflow architectures.

The author considers an architecture framework composed of a set of processing elements

(PEs) that communicate with each other via a communication network under control of a

global controller. The architecture exploration views the search space in terms of number of

PEs, number of functional elements (FEs) in each PE, throughput rate and latency of each

FE, etc. The designer has to choose an architecture instance from a template by selecting

parameter values such that a feasible design is found, and then allow for a mapping of

applications onto that instance.

While there is a rich repository of published scheduling and mapping algorithms, a sam-

ple set was selected which which is most related to the algorithms proposed in this paper.
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Heuristic scheduling methods such as List Scheduling [10] and Force-Directed Scheduling

(FDS) [11] play a key role in high-level synthesis approaches for architecture design. List

Scheduling for instance, attempts to minimize execution time by finding the best schedule

of a dataflow graph given a set of resources. FDS on the other hand attempts to derive

the smallest set of resources needed to schedule a dataflow graph within a fixed execution

window. But neither method takes care of actually mapping graph nodes to resources; thus

timing and routing overheads (i.e., registers and multiplexers) are ignored. Researchers

have explored variations to the basic list scheduling algorithm, such as dynamic critical

path scheduling [12], topological clustering [13], and critical nodes parent trees [14]. These

algorithms have been shown to improve the performance of the basic list scheduling algo-

rithm at the expense of increased algorithm complexity.

In [15], scheduling of nodes is accomplished using a simulated annealing loop. The

objective is to schedule a control data flow graph (CDFG) satisfying the timing constraint

while minimizing the amount of resources used. Each node has a scheduling window with

bounds given by the as soon as possible (ASAP) and as late as possible (ALAP) algorithms.

Mutations/Alterations to the schedule are done by moving a node only one control step,

as they saw no improvement doing this for more than one control step. Any data graph

violations are immediately resolved by rescheduling nodes until there are no violations. The

cost of a current solution is evaluated on the worst case resource use in any control step and

the number of slack nodes required. The costs for a solution are computed incrementally to

avoid high costs to compute the fitness of the current solution. The algorithm complexity

grows linearly with respect to the schedule length.

In [16], a Scheduler and Mapper are used to assign operations/nodes to functional units

in a template designed to be implemented on an FPGA or Application Specific Integrated

Circuit (ASIC). It takes as input C code and outputs the Hardware Description Language

(HDL) to implement the accelerator for the systolic array code. Mapping is done using

orthogonal projection and clustering. Scheduling is done using a shifted-linear technique.

[17] solves RCS, which has the goal to minimize the control steps given the constraint
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of total area, by using an A* search algorithm which prunes the non-promising paths. A

priority queue is maintained to contain the search nodes represented by partial schedules.

The search starts from an ASAP schedule. Each node that violates the resource constraint

is delayed one time step and then this new solution is added to the queue. A heuristic is

used to evaluate partially scheduled solutions to determine which solution is closest to the

goal. This heuristic has complexity O(n2 + c2) where n is the number of nodes and c is the

critical path length.

[18] uses integer linear programming (ILP) model to map applications on hardware

platforms that consist of microprocessors, ASICs, and FPGAs. Using this model, the au-

thors simultaneously solve scheduling and mapping problems. The computation complexity

of ILP algorithms is usually large when compared to heuristic algorithms. As the ILP al-

gorithm proposed in this paper is intended for task graphs, where the number of nodes and

edges is small (usually up to 15 tasks and 12 edges), the authors claim that the complexity

of this algorithm is acceptable.

In [19], two alternate polynomial-time complexity heuristic algorithms for simultaneous

scheduling and mapping of a data flow graph (DFG), optimizing for gate-oxide leakage, are

presented. These algorithms selectively map the nodes on the non-critical path to instances

of pre-characterized resources consisting of transistors of higher oxide thickness and nodes

on the critical path to resources of lower-oxide thickness. The first alternative provides

flexibility to the designer to provide time constraints. Whereas the second alternative

converges to solutions faster as the time constraint is not stringent.

In [20], a tool is designed to synthesize defect-tolerant architectures for Microfluidic

Biochips. The synthesis algorithm (which includes mapping, scheduling, and placement)

is based on parallel recombinative simulated annealing algorithm which is a combination

of multi-objective simulated annealing and genetic algorithms. Mapping of a node to a

resource (i.e. a microfluidic module) is done based on the node’s gene value, scheduling

is done using List scheduling algorithm, and a greedy algorithm is used for placing the

microfluidic modules on the chip.



6

In [21], two different exploration algorithms combining pipeline scheduling, module se-

lection, and resource sharing during architecture synthesis are presented. Scheduling is done

onto pre-pipelined library elements. The first alternative uses a recursive branch-and-bound

algorithm based on ASAP scheduling. The second alternative uses backtracking (unschedul-

ing), based on iterative modulo scheduling. The empirical computational complexities of

these algorithms are O(mn) and O(n3 ln(n)) respectively, where m is the number of possible

implementation options of a node and n is the number of nodes.

In [22], an iterative scheduling algorithm based on ant colony optimization is proposed.

In this algorithm, a collection of agents (ants) cooperate together to search for a solution.

Ants generally follow the previous path the other ants have taken, but with a certain

probability will pick a different path. Whichever time step has the most ants go through

gives the time step the node will be scheduled at. Using experimental results, it was shown

that this algorithm outperforms an SA based TCS algorithm in average area savings. It

was also shown that SA algorithm took three to four times more time than the proposed

algorithm. However, the SA algorithm used generates a random neighbor solution that may

not be valid.
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Chapter 3

Hardware Architecture Template for Accelerating Pipelined

Simulated Annealing Kernels

Note that the hardware architecture template used for SAKs was designed by Jonathan

Phillips. A reasonable assumption is made that the algorithmic flow for SA techniques

involves the generation of an initial solution, usually randomly, and evaluated for a score.

This initial solution is designated as the current solution until a new one is generated and

accepted. SA algorithms usually iterate several thousand times. In every iteration, the

current solution is copied to a second buffer and altered slightly, where it is designated as

the new solution. This new solution is then evaluated for a score. The score of this new

solution is then compared against the score of the current solution to determine whether to

accept this new solution. A probability value (p), for minimization problems considered in

this paper, is computed using Equation (3.1):

p = e
4S
T ,4S = Snew − Scurrent (3.1)

where4S is the difference between the score of new solution (Snew) and current solution

(Scurrent), and T represents temperature. The new solution is accepted if: (a) Snew is less

than Scurrent or (b) the outcome of a random number generator (between 0 and 1.0) is less

than p. When the temperature is high, suboptimal solutions are more likely to be accepted.

This feature allows the algorithm to escape from local minima as it searches the solution

space and zero in on a close approximation to the optimal solution. The last step in the

loop decreases the temperature according to a pre-determined schedule. A typical method

is to geometrically decrease the temperature by multiplying it with a cooling rate, which is

generally a number such as 0.99 or 0.999. The closer the cooling rate is to 1.0, the more
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Fig. 3.1: Multiple solution storage approach to illustrate pipelining in pSAKs

times the loop will execute. This results in longer program execution, but also improves the

probability of finding the best solution. This algorithmic flow allows for variations on how

solutions are represented, scores are calculated, solutions are altered, and evaluated, which

often are tailored to the problem being solved.

Since classic SA techniques are sequential in nature, pipelined SA (pSAK) versions

require a storage system to hold the multiple solutions in the pipeline. This process is

illustrated with Figure 3.1. During iteration i, a Copy process transfers contents of memory

bank-0 (M0) into memory bank-1 (M1) and an Alter process performs a random (strictly

pseudo-random) alteration of the solution in memory bank-2 (M2). Therefore its source

and destination banks are the same. An Evaluate process evaluates the solution in memory

bank-3 (M3) over a cost function and stores the score back into M3. An Accept process

makes a choice between the current solution residing in M0 and the new solution (i.e., it

has passed through Copy, Alter, and Evaluate processes previously) residing in memory

bank-4 (M4). If it rejects the new solution in M4, the solution in M0 continues to be the

currently accepted solution and is used as the source by the Copy process in iteration i + 1.

Therefore the solution in M0 is copied into M4, overwriting the rejected solution of

iteration i. The current solution in M0 is then used to compare with the new solution in

M3 during iteration i + 1. However, as shown with iteration i + 3, if the new solution in

M1 is accepted over the current solution in M0, then in iteration i + 4, solution in M1

becomes the current solution and will be used to overwrite the contents of M0. From this

illustration it can be observed that to obtain a pipelined behavior in a hardware architecture,

it is necessary (conservatively speaking) to design five memory banks that can be accessed
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Fig. 3.2: Template for pSAK on an FPGA

concurrently by sub-systems representing the four main processes: Copy, Alter, Evaluate,

and Accept(CAEA). The only process not represented by the illustration in Figure 3.1,

because it does not use the memory banks, is the Adjust Temperature process, which is

responsible for adjusting the temperature at the end of every iteration. By pipelining the

behavior of a SAK, the quality of the final solution is comparable to that from a non-

pipelined version as shown in the results section (see Table 5.4) for various test cases.

Based on this concept, the template for the pipelined hardware accelerator architecture

(shown in Figure 3.2) is composed of (a) set of five memory banks, (b) memory multiplexing

(data routing network), (c) five data-processing sub-systems (CAEA and Adjust Temper-

ature sub-systems), and (d) a kernel controller (responsible for data routing network, sig-

naling new iterations to the sub-systems, and signaling the host processor when the kernel

execution is complete). The data processing sub-systems represent a one-to-one mapping of

equivalent processes in simulated annealing. The memory banks are used for the purpose

of storing solutions to a SA problem.
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Parameters that can vary among flavors of kernels are problem size, how the solution

is represented, strategy for altering solutions, cost functions to evaluate solutions, rate of

cooling, etc. Some of these features are used to modify parameters in the template used

inside the memory banks and memory multiplexing. Other features are used in deriving

the micro-architectures of the sub-systems.

The pSAK accelerators are assumed to interact with a host processor on the FPGA

via On-chip Peripheral Bus or Processor Local Bus. These bus standards are widely used

by the community when Xilinx FPGAs are considered. An assumutation is made that a

higher-level spacecraft software controller code will reside on and be executed by the host

processor. For this paper, this processor is assumed to reside on the MicroBlaze soft-core

processor.

The template of the memory banks and memory multiplexing are shown in Figures 3.3

and 3.4. They are represented as a set of parameterizable VHDL entities. The present

version of the template assumes a simple configuration mode for a random access memory

(RAM) module: one read and one read/write port. Considering this simple configuration

mode for a RAM module, concurrently reading from N address locations requires N
2 copies

of a single address space (representing a solution) stored in N
2 RAM modules. This template

consists of five memory banks. Each bank can consist of N
2 read ports and N

2 read/write

ports. However, since there are four data-processing sub-systems (CAEA) that can con-

currently read from any of the five memory banks (based on illustration provided earlier

with Figure 3.1), this template consists of a series of read-address (ra) multiplexers (four

to one) M i,j
ra , where i refers to the memory bank and j refers to a single RAM module

inside the memory bank. These multiplexers in a given bank allow only one of the four

data-processing sub-systems to read up to N data points from N address locations, in a

given iteration. The data read out of the memory banks are then passed into a set of

read-data (rd) multiplexers (five to one) M i
rd, where i refers to the multiplexer index. A

set of N such multiplexers are dedicated to each of the sub-systems in the CAEA pipeline.

The only exception is that two such sets are dedicated to the Accept sub-system (but not
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Fig. 3.3: Memory banks and memory multiplexing for pSAK on an FPGA

shown in Figure 3.3 for sake of clarity) to allow reading of solutions (current and new) from

different memory banks. Note that there are two read-data (rd) ports coming out of each

RAM module (where the second rd port comes from the read/write address (rwa)), but are

not shown in the figure for sake of clarity.

Writing of data is carried out through the read/write multiplexers M i,j
rw, where i refers

to the memory bank and j refers to a single RAM module inside the memory bank. These

multiplexers carry the read/write address (rwa), write enable (we), and write data (wd)

lines. Note that all the multiplexers in Figure 3.3 are controlled by the kernel controller. To

maintain coherency among the N
2 copies of a solution in a memory bank when writing, rwa,

we, and wd must be the same for all the RAM modules within a memory bank. While this

does not allow for writing disparate data into N
2 arbitrary addresses concurrently, a minor

modification within each RAM module allows for a restricted form of writing to multiple

(but contiguous) address locations. To support reading from/writing to multiple address

locations, data in a RAM module is distributed across multiple RAM blocks as shown in
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Fig. 3.4: Template of a RAM module to support reading from/writing to one, two, or four
contiguous locations

the template of Figure 3.4. This template can currently support access to one, two, or four

contiguous locations. The parameters of this template are as follows: A is the number of

bits used to represent an address, P represents data width in bits (also referred to as a word

henceforth), and S is the number of bits stripped from an address to enable single/wide

word read/writes.

As the data is distributed across multiple RAM blocks (R1-R4), for single word reads,

rd0 outputs of all RAM blocks are passed through a multiplexer (multiplexer−4) controlled

by the S bits from ra. Another multiplexer (not shown in the figure for sake of clarity),

controlled by the S bits of rwa, is used to select rd1 outputs of all RAM blocks when rwa

port is used in read mode. However, for wide word reads, rd0 outputs of all RAM blocks are

concatenated as RD(wide). Similarly rd1 outputs are concatenated as another RD(wide),

not shown in the figure, when rwa port is used in read mode.

For single word read/writes, an instance of this template is created using only RAM

block R1 with S being zero. To allow wide word reading from/writing to two consecutive
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locations, RAM block R2, WriteEnabler, multiplexers− 0, and 1 are added to the above

instance, with S being one. RAM R1 contains all even address locations and RAM R2

contains all odd address locations. Also, multiplexer − 4 (only the first two inputs) is

included in this instance to allow for single word reads, as explained earlier. Depending on

the value of the S bits stripped from the address rwa, the WriteEnabler module drives the

we lines of RAM R1 and R2. On similar lines, to allow wide word reading from/writing to

four consecutive locations, RAM blocks R3 and R4, multiplexers−2, 3 and 4 (the last two

inputs) are added to the above instance, with S being two. In this case, the WriteEnabler

drives the we lines of all the four RAM blocks.

Note that the RD(wide) data lines (shown in Figure 3.4) from all RAM modules in

each memory bank also pass through a set of N read-data multiplexers similar to rd data

lines (shown in Figure 3.3) for each sub-system, but are not shown in Figure 3.3, for sake

of clarity.

The template is designed to allow for various parameters, specific to a target pSAK,

to drive the customization. For example, the data width P is determined by the maximum

of the number of bits to represent an element in a solution and the number of bits to

represent the cost of a solution. The number of address bits needed (A in Figure 3.4)

is determined by taking the logarithm of the number of locations required to represent a

solution plus one (to store the score of a solution). Other parameters are derived through

the process of architecture exploration, specifically the iterative pipeline-latency-balancing

(PLB) algorithm described later in section 4. The number of read-data multiplexers (M i
rd of

Figure 3.3) required for each sub-system is determined by the number of simultaneous reads

for that sub-system. The number of RAMs (N
2 in Figure 3.3) for each memory bank and

conversely read-address multiplexers (M i,j
ra of Figure 3.3) are determined by the sub-system

that requires the most simultaneous reads (one multiplexer per read and one RAM per two

reads are required).

The templates for sub-systems in the CAEA pipeline are shown in Figure 3.5. The

input step signal (generated by the kernel controller) indicates to a sub-system when a new
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Fig. 3.5: Common templates for sub-systems of the CAEA pipeline for interacting with the
memory banks
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iteration begins. The output done signal (received by the kernel controller) is driven by

the sub-system when it has completed the given task for that iteration. Figure 3.5a shows

a common template for Alter and Evaluate sub-systems that interacts with one memory

bank. Currently the tool is set for up to eight parallel reads. So there are eight read ports

(ra/rd). The write signals are driven using the ports read/write address (rwa), write data

(wd), and write enable (we). Figure 3.5b shows a common template for Copy and Accept

sub-systems that interacts with two memory banks. Any output not used in a template

is driven to ground. This allows the synthesis tool (Xilinx’s XST) to optimize away or

reduce any components that use the grounded output. This synthesis tool also optimizes

or reduces any components that drive any inputs not used in the template. As a note, the

kernel controller is very simple and does not change across pSAKs, its template consists

of a parameterizable VHDL implementation of this controller with the cutoff temperature

passed in as a parameter. The Adjust Temperature sub-system is similarly implemented

as a parameterizable VHDL entity with the parameters being the cooling rate and initial

temperature.
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Chapter 4

Architecture Derivation Methodology

The starting point for the architecture derivation methodology in our approach is a

sequential SAK expressed as a C program constrained to a set of five processes (functions):

Copy, Alter, Evaluate, Accept, and Adjust Temperature. Through the use of existing front-

end compiler passes in the GNU C compiler (gcc), a CDFG is extracted for each process

as well as the constants describing parameters of the kernel such as initial temperature,

cooling rate, cut-off temperature, and size of the solution. Then each CDFG is converted

into a DFG by unrolling the loops completely, converting conditional constructs (such as

if) into predicative execution, etc. The DFGs corresponding to each sub-system in the

CAEA pipeline are then passed through an iterative PLB algorithm explained in section

4.1.

4.1 The PLB Algorithm

The PLB algorithm (shown in Figure 4.1) first associates an initial latency for the

Copy sub-system by adding one to the number of events to be scheduled in the kernel.

An area cost was not considered because the Copy sub-system is just a state machine.

The second step is to associate an initial latency and area for the Accept sub-system. It

always assumes a fixed latency of 56 clock cycles because it is essentially a sequential set

of operations supported by the following circuits: an integer subtractor, integer to floating

point convertor, floating point divider, exponential look-up table, random number generator,

and floating point comparator. When these circuits are implemented using the Xilinx CORE

generator (and our custom circuits), the overall latency adds up to 56 clock cycles. The

next step involves computing the initial latency (computed by the Scheduler discussed later

in section 4.3) and area (computed by the Mapper discussed later in section 4.4) for the
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Alter and Evaluate sub-systems. Before Loop1 is executed, the current sub-system with

the longest latency is given a token. Loop1 is exited if a sub-system is given the token

twice in a row or the Accept sub-system has the token (because it cannot be parallelized

to decrease its latency). In Loop1 a check is carried out to see if Copy sub-system has the

token, in which case, the current wide word read/write usage for the Copy sub-system is

doubled. Wide word read/write usage here refers to reading from/writing to more than

one location (i.e., contiguous locations) in one clock cycle by using the template shown in

Figure 3.4. Then its latency is updated. However, if either the Alter or Evaluate sub-

system has the token, the Scheduler and Mapper are invoked to try and reduce latency of

the sub-system that has the token, to a value less than the second longest latency. If both

the Scheduler and Mapper produce a valid solution, then the schedule, mapping, latency,

and area of the sub-system is updated; otherwise the sub-system that currently has the

token retains the token and eventually Loop1 is exited. After these checks, the token is

passed to the sub-system with the longest (worst) latency. These steps are iterated until

the exit condition of the loop is met.

Once Loop1 exits, a check is carried out to see either the Alter or Evaluate sub-system

has the token. If yes, then lowerBound is initially set to the latency of the sub-system with

second longest latency and upperBound is initially set to the latency of the sub-system

that has the token. Then Loop2 is executed whose purpose is to achieve the lowest possible

latency for the sub-system that has the token. The first step in Loop2 is to invoke the

Scheduler and Mapper for the sub-system that has the token, to produce a circuit with a

desired latency of no more than halfway between lowerBound and upperBound.

If the Scheduler and Mapper produce a valid solution then upperBound is set to the

latency derived from the Scheduler; otherwise, lowerBound is set to the mid-point between

the previous lowerBound and upperBound. These steps are iterated until the difference of

lowerBound and upperBound is less than two clock cycles.

The last step in the PLB algorithm is to see if Alter and Copy sub-systems should be

merged. The criteria for merging, are as follows: (a) neither of these sub-systems should be
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Associate initial latency for Copy sub-system
Associate initial latency and area for Accept sub-system
Compute initial latency and area for Alter, Evaluate sub-systems

[Invoke Scheduler, Mapper]
Identify sub-system with longest latency and give it a token
LOOP1: Do

if(Copy sub-system has token) then
Double the wide word read/write usage, if possible, and update its latency

else if (Alter or Evaluate sub-system has the token) then
Invoke Scheduler to reduce latency of sub-system having the token, to a value less than

the 2nd longest latency
if(Scheduler produces a valid solution) then

Invoke Mapper with the new schedule from the Scheduler
if(Mapper produces a valid solution) then

Update schedule, mapping, latency, and area of the sub-system that has the token
End If

End If
End If
Identify sub-system with longest latency and pass the token to it
Exit Loop1 if new recipient of token is not different from previous recipient Or if Accept

sub-system has the token
END LOOP1
if(Alter or Evaluate sub-system has the token) then

set lowerBound to latency of the sub-system with 2nd longest latency
set upperBound to latency of sub-system that has the token
LOOP2: Do

Invoke Scheduler (for sub-system that has the token) to produce a schedule with a
latency no more than half-way between lowerBound and upperBound

if(Scheduler produces a valid solution) then
Invoke Mapper with the new schedule from the Scheduler
if(Mapper produces a valid solution) then

Update schedule, mapping, latency, and area of sub-system that has the token
Set upperBound to latency derived from Scheduler

End If
End If
If(Scheduler or Mapper do not produced a valid solution) then

Set lowerBound to mid-point between previous lowerBound and upperBound
End If
Exit Loop2 if upperBound and lowerBound have a difference of less than 2 clock cycles

END LOOP2
End If
Merge Alter and Copy sub-systems if viable

Fig. 4.1: PLB algorithm
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in possession of the token and (b) their combined latency should be less than that of either

Evaluate or Accept sub-system. Since merging can sometimes result in an unfavorably

large joint latency, the option of doubling the wide word read/write usage for the Copy

sub-system to bring down the joint latency is explored.

Loop1 was based off a design by Jonathan Phillips, but additional functionality was

added to properly handle invalid solutions generated by the Scheduler and Mapper. All

other functionality in the PLB algorithm was added to Jonathan Phillip’s original design

to decrease maximum execution time at the cost of some additonal area (i.e, done by

Loop2), and decrease area by reducing memory sub-system (i.e., done by merging Alter

and Copy sub-systems). Before explaining the Scheduler and Mapper algorithms, the

resource estimation technique is introduced in section 4.2.

4.2 Resource Estimation

Note that the resource estimation was developed and designed by Jonathan Phillips.

Since the design space exploration needs to evaluate large number (Ex. just under 100,000,000

for one invocation of the Scheduler for the dgv500 test case used in chapter 7) of circuits

(through the PLB, Scheduler and Mapper algorithms), there was a need to quickly obtain

approximate estimations of the area usage of circuits, without having to go through time

consuming Electronic Design Automation (EDA) based synthesis, translate, map, place and

route (P&R) tool flow. Therefore to facilitate this quick estimation process, the compo-

nents used in the CAEA sub-systems are classified into two categories: (a) those invoked

using Xilinx CORE Generator and (b) those composed of basic building blocks (such as

integer adders, modulo operators, comparators, multiplexers, registers, etc.). For circuits

of type ‘a’, post P&R area estimates are obtained from Xilinx CORE Generator. However

for circuits of type ‘b’ the following technique described next is used.

First post P&R usage is obtained of basic building blocks in terms of device primitives

(LUTs, FFs, and DSPs) for some data widths (usually at regular intervals of four). Curve

fitting tools in MATLAB is used to obtain polynomial expressions (up to 5th order) to

interpolate an estimate of post P&R device primitive usage for other data widths. Validate
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Table 4.1: Estimated vs. actual device primitive usage for a circuit composed of an integer
adder followed by an integer multiplier

Data LUT Usage FF Usage DSP Usage
Width Estimate Actual % Error Estimate Actual % Error Estimate Actual % Error

4 11 13 15.4 8 8 0 0 0 0
8 8 8 0 8 8 0 1 1 0
12 12 12 0 12 12 0 1 1 0
16 16 16 0 16 16 0 1 1 0
24 24 24 0 48 48 0 3 3 0

Table 4.2: Estimated vs. actual device primitive usage for a circuit composed of an integer
adder, integer multiplier, and three 2:1 multiplexers

Data LUT Usage FF Usage DSP Usage
Width Estimate Actual % Error Estimate Actual % Error Estimate Actual % Error

4 21 25 16 8 8 0 0 0 0
8 34 32 6.3 8 8 0 1 1 0
12 48 48 0 12 12 0 1 1 0
16 64 64 0 16 16 0 1 1 0
24 97 96 1 49 49 0 3 3 0

of our estimation technique is done by estimating device primitive usage for various circuits

(i.e., various data widths and combinations of basic building blocks) and compare with the

actual post P&R values of the implemented circuits, as shown in Tables 4.1 and 4.2. This

is similar to estimations done in [23] and [24]. However, unlike the peer publications, this

technique is not extended to clock frequency estimation.

Table 4.1 shows the estimated and actual values for a circuit composed of an integer

adder followed by an integer multiplier. The estimations are done by combining the individ-

ual resource estimations of the integer adder and integer multiplier. There is only an error

of 15.4% for a data width of four for LUT usage. Table 4.2 shows the estimated and actual

values for a circuit composed of an integer adder, integer multiplier, and three 2:1 multi-

plexers. The estimation of LUTs, FFs, and DSPs is computed by summing the individual

resource estimations from each building block. There is only error as high as 16% for LUT

usage for lower data widths. However, the kernels considered for testing required higher

data widths (> 10), for which our estimation technique is observed to be fairly reliable with

errors less than 5%.

The heterogeneity of modern FPGAs made it necessary for us to modify traditional

techniques of resource estimation (similar to [25]), by considering search space options that
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Table 4.3: Different integer components implemented on a Xilinx Virtex 4 FPGA
Component LUT Usage FF Usage DSP Usage
iadd 16bit 16 16 0
imul 16bit 0 0 1
iabs 16bit 30 16 0

can dynamically estimate costs of individual solutions in terms of device primitives such as

LUTs, FFs, DSPs, and BRAMs, in the Scheduler and Mapper algorithms. Let us consider

a sub-set of 16 bit integer components (adder, multiplier, and absolute value) implemented

on a Xilinx Virtex 4 FPGA. The area requirements of these three components (in terms of

device primitives excluding BRAMs) are shown in Table 4.3.

For example, looking at which one of these components is cost effective in terms of

area usage, for a given set of device primitives, it is not always clear. The integer adder

(iadd 16bit) and absolute value (iabs 16bit) use only LUTs and FFs; whereas, the integer

multiplier (imul 16bit) uses only a DSP. Therefore, a weighted sum of device primitives

(WSDP) as a unified unit of currency is proposed to evaluate the area cost of components

mapped onto FPGAs. WSDP for any component/resource (R) is computed using Equation

(4.1):

R =
∑

i

{
ni
pi

if ni ≤ pi

∞ otherwise

}
∀ i ∈ {LUT, FF, DSP, BRAM} (4.1)

where, ni is number of device primitives of type i needed to implement a virtual re-

source, and pi is number of device primitives available. Note that if adequate device primi-

tives of any type are not available, the associated weight is taken as infinity (implying that

a particular resource cannot be implemented). Table 4.4 re-expresses the three components

of Table 4.3, for different sets of available device primitives, in terms of WSDPs. The

lowest-cost implementation in each set is shown in bold. Note that, as iabs 16bit uses more

number of LUTs and same number of FFs than iadd 16bit, it wouldn’t ever be chosen over

the latter. However, it can be chosen over imul 16bit, for certain sets of device primitives

(see column 5 of Table 4.4). Also, note that iabs 16bit cannot be implemented under one
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Table 4.4: WSDPs for implementations of Table 4.3
Component LUT FF DSP WSDPs when available LUTs/FFs/DSPs are

Usage Usage Usage 1000/1000/20 100/100/5 16/16/1
iadd 16bit 16 16 0 0.032 0.32 2
imul 16bit 0 0 1 0.05 0.2 1
iabs 16bit 30 16 0 0.046 0.46 ∞

set of available device primitives (see column 7 of Table 4.4).

4.3 The Scheduler

The Scheduler technique is redone from Jonathan’s work with the significant differences

being: (i) reduction of complexity when evaluating a solution (ii) using a different alteration

technique that eliminates the need to check for DGVs when evaluating a solution. The

Scheduler algorithm (shown in Figure 4.2) takes as inputs, a DFG for the sub-system

and the desired latency for the schedule. The output of the Scheduler is a schedule (i.e.,

start times for all nodes in the DFG) and the achieved latency. The next step in the

algorithm is to initialize the temperature. This is set to the product of the number of

nodes in the DFG and the desired latency, with the result of this product being raised to

the power 0.8. This temperature was found to work well across different problem sizes.

The ASAP and ALAP scheduling window for all nodes in the DFG is set next. The initial

solution derived by the Scheduler is the ASAP schedule, thus ensuring that the algorithm

begins with a schedule without any data graph violations (DGVs). A DGV occurs when a

node’s start time is scheduled at a time earlier than it’s predecessor’s start time plus the

latency of the predecessor’s operation. The currentScore is initialized with the score of

this initial solution. Derivation of this score is described later using Equations (4.2), (4.3),

and (4.4). Lastly, the best solution is set to be the initial solution and the bestScore to be

the currentScore.

The first step in the Loop is to randomly pick one node and assign a new random start

time within that node’s ASAP to ALAP window. Similar to [15], the need to compute the

score for DGVs is avoided by updating the start times (to a new time within the ASAP to

ALAP window), as necessary, of the predecessors and successors of the random node until
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Input: DFG, desired latency
Output: operation schedule, achieved latency
Initialize temperature, ASAP, and ALAP for each node
Set the initial solution (ASAP schedule) and currentScore (score of initial solution)
Set the best solution (to initial solution) and bestScore (to currentScore)
Loop: Do

Choose a random node and assign a new start time within its ASAP to ALAP window
For each predecessor and successor of the random node

If(data graph violation: DGV)
Assign a new start time within its ASAP to ALAP window that will not incur a DGV

End if
End For
Incrementally calculate the score (nextScore) of this solution

p = e
currentScore−nextScore

temperature

If (nextScore ≤ currentScore) or (RandomFloat(0 to 1) < p))
Accept all changes to start times of the nodes and update currentScore with nextScore
If (currentScore ≤ bestScore)

Update the best solution with current solution and update bestScore with currentScore
End If

Else
Do not accept changes to start times of nodes (i.e. undo changes)

End If
temperature = temperature * coolingRate
Exit Loop if temperature is less than or equal to cutoff Temperature

End Loop
If best solution is not valid, do not return any solution

Fig. 4.2: Scheduler algorithm
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there are no DGVs. The next step is to evaluate this solution for a score (nextScore).

A solution is evaluated according to Equations (4.2), (4.3), and (4.4). Any time a gap

of one or more cycles exists between completion of a parent node and commencement of a

child node, registers are needed. Since mapping has not been carried out, the number of

registers that are required (#regs) is estimated pessimistically (i.e., register sharing is not

considered) according to Equation (4.2):

#regs =

{ n−1∑
i=0

pi−1∑
j=0

si − (sj + Lj) if sj + tj < si

0 otherwise

(4.2)

where n is the number of nodes in the graph, pi is the number of parents of node

i, s is the start time, and Lj is the latency of node j. Our tool currently uses only one

implementation for every operation (i.e., different latencies or resource implementations are

not considered). An estimate of the area of a solution (in WSDP units) is computed using

Equation (4.3):

Rcummulative =
VR−1∑
j=0

CjRj (4.3)

where VR is the number of distinct virtual resource types (components). A virtual

resource type here refers to basic arithmetic and logic components, such as integer adder,

floating-point multiplier, floating-point comparator, etc., as well as registers. Cj is the

maximum number of concurrent instances of each of the VR virtual resource types (with the

exception of registers, for which Cj = #regs) and Rj is a weighted resource value in WSDPs

from Equation (4.1). In the Scheduler the area contribution by multiplexers required for

resource sharing is not considered.

From the memory template described in Figure 3.3, each memory bank (with four read

ports and four read/write ports i.e., N=8) has two limits depending on whether a write

is enabled or not. The first limit is to allow for up to eight simultaneous reads and no

writes in one clock cycle. The number of violations of this limit is accumulated in Prw. The
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second limit on the memory bank is four simultaneous reads and one write in one clock

cycle. The number of violations of this limit is accumulated and added into Prw. Based

on the estimated WSDPs for virtual resources (Rcummulative) and the number of violations

(Prw), a score for the schedule (scoreschedule) is calculated using Equation (4.4):

scoreschedule = Rcummulative + 100Prw (4.4)

where Prw is used to penalize the score with a factor of 100 in order to strongly

discourage accepting the current solution. The nextScore in the Loop is initialized using

currentScore, and is then incrementally updated (as was done in [15]) based on the changes

in the schedule of the nodes. Incremental updating reduces the complexity of computing Cj

of each of the different resource types from O(n) to O(L) where n is the number of nodes

and L is the desired latency.

Once the score of the solution is calculated according to Equation (4.4), the next step

in the Scheduler is to determine if these changes should be accepted. An acceptance prob-

ability (p) is first generated as shown in the Scheduler (Figure 4.2). There are two criteria

for the changes to the schedule to be accepted: (a) the new solution’s score (nextScore)

has a score lower than the currently accepted solution’s score (currentScore) or (b) the

outcome of a random number generator (between 0 and 1.0) is less than the probability (p).

If the changes are accepted then the start times of all the nodes that were changed are

updated. The currentScore is also updated with the value from nextScore. If the currently

accepted solution’s score (currentScore) is less than or equal to the best solution’s score

(bestScore), then the best Solution and score (bestScore) are updated with the currently

accepted solution and associated score (currentScore) respectively. If neither criterion was

met, the changes to the solution are not accepted (undone).

The temperature is updated by multiplying it by a predefined cooling rate. The Loop is

exited if the temperature is less than a predefined cutoff temperature. A final check is done

to see if the best solution is valid (i.e., it does not use too many concurrent read/writes).

If no valid solution is found, then no solution is returned. If a valid solution is found then
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the best solution is returned with its associated latency. Note that the associated latency

of the solution can be less than (but never more than) the desired latency (as lower latency

can save register usage compared to the desired latency).

4.4 The Mapper

The Mapper technique is redone from Jonathan’s work with the significant differences

being: (i) reduction of complexity when evaluating a solution (ii) using a different alteration

technique that eliminates the need to check for component over-utilization when evaluating

a solution. The Mapper algorithm (shown in Figure 4.3) takes as input a DFG for the

sub-system and the schedule of the nodes (output of the Scheduler). The output of the

Mapper is the resource bindings to specific components (such as integer adder, floating-

point multiplier, floating-point comparator, etc.) for each of the nodes in the DFG. The

next step in the algorithm is to initialize temperature. The initial temperature is set to the

number of nodes in the DFG raised to the power 0.6, because this temperature was found to

work well across different problem sizes. In the next step the number of components of each

operation type is set to the maximum number of concurrent instances required in any clock

step for that operation type. A way to reduce the area for support units (i.e., multiplexers

and registers) can sometimes be achieved by allowing more components than the worst case

needed in any clock cycle; however, in our case a decrease in area performance was observed

by doing so. This could partly be due to the fact that allowing more components increases

the design search space which wasn’t accounted for by giving our Mapper more time to run.

Note that operation chaining (i.e., having two or more operations combined without having

a register in between) is not considered. The initial solution is obtained by going through

the nodes one by one and assigning a lowest numbered component that is not currently

mapped in a given clock cycle. The currentScore is initialized with the score of this initial

solution. Derivation of this score is described later using Equation (4.5). Lastly, the best

solution is set to be the initial solution and the bestScore to be the currentScore.

The first step in the Loop is to randomly pick one node and bind it to a randomly

selected component of the same operation type. If the randomly selected component was
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Input: DFG, schedule of nodes
Output: resource binding for nodes, achieved area
Initialize temperature, and number of components of each operation type
Set initial solution (greedy assignment solution) and currentScore (score of initial solution)
Set the best solution (to initial solution) and bestScore (to currentScore)
Loop: Do

Choose a random node and bind it to a new component within its operation type
If(another node was already assigned to the new component during the same control step)

Swap the component bindings of the two nodes
End if
Incrementally calculate the score (nextScore) of this solution

p = e
currentScore−nextScore

temperature

If (nextScore ≤ currentScore) or (RandomFloat(0 to 1) < p))
Accept changes to component bindings of the random node
If(swapping of component bindings of the two nodes occurred)

Accept changes to component bindings of the swapped node
End If
Update currentScore with nextScore
If (currentScore ≤ bestScore)

Update the best solution with current solution and update bestScore with currentScore
End If

Else
Undo changes to component bindings of the random node
If(swapping of component bindings of the two nodes occurred)

Undo changes to component bindings of the swapped node
End If

End If
temperature = temperature * coolingRate
Exit Loop if temperature is less than or equal to cutoff Temperature

End Loop
If best solution is not valid, do not return any solution

Fig. 4.3: Mapper algorithm
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already binded to another node in the same control step, then the bindings of these two

nodes are swapped. This avoids any component over-utilization (i.e., two nodes assigned to

the same component in a given clock step) that can occur in the Mapper. The next step is

to evaluate this solution for a score (nextScore).

The process of evaluating the score of a solution in the Mapper is more complex than

that in the Scheduler. The Mapper must be cognizant of total circuit size (components and

support units). Recall, the Scheduler estimated the number of support units (registers only)

because the mapping information was not available. Now that this information is available,

the Mapper calculates the exact number of support units (registers and multiplexers) re-

quired. Note that wider multiplexers have an impact on maximum clock frequency, and

area usage. Therefore, currently the tool supports multiplexers up to 16 inputs. Based on

the WSDPs for components (Rcummulative) and the total number of multiplexers requiring

more than 16 inputs (Pm), a score for the mapping (scoremap) is calculated using Equation

(4.5):

scoremap = Rcummulative + 100Pm (4.5)

where Pm is used to penalize the score with a factor of 100 in order to strongly discour-

age accepting the current solution. Note that Rcummulative is from Equation (4.3), with the

exception that this estimate includes the exact number of registers, and multiplexer area.

The nextScore in the Loop is initialized using currentScore, and is then incrementally

updated based on the new binding(s). A data structure (shown in Figure 4.4) is used

for incrementally updating the number of registers and multiplexers at the inputs of each

component.

Each component has up to four input ports. Each port can require registers and mul-

tiplexers in order to process data from different components correctly (tracked by Number

Of Multiplexers and Number of Registers). To accurately keep track of nodes that use

the same bus between two components (i.e., this encourages that two edges in the DFG

that go between two matching source and destination operation types with the same time
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Fig. 4.4: Data structure used for keeping track of component bindings

delay before consumption would share the same bus, source and destination components),

additional information is stored in a component. A component (Component) tracks other

components (Source Component) that are feeding data into any of its inputs (Input Port).

A Source Component can have different number of the delay slots (i.e. registers) that are

needed to hold the data before it is consumed by this component (Component). This is

tracked by the Source Component in the Delay Slots array.

Without using the above data structure and without incrementally updating the score,

the complexity of computing the register and multiplexer area usage was O(n logn) where n

is the number of nodes in the DFG. By using the above data structure itself, the complexity

was reduced to O(n). The complexity was further reduced to O(1) by using the above data

structure and incrementally updating the score.

Once the score of the solution is calculated according to Equation (4.5), the next step

is to determine if these changes should be accepted. An acceptance probability (p) is first

generated as shown in the Mapper (Figure 4.3). There are two criteria for the changes

to the mapping to be accepted: (a) the new solution’s score (nextScore) has a score lower

than the currently accepted solution’s score (currentScore) or (b) the outcome of a random

number generator (between 0 and 1.0) is less than the probability (p).

If the changes are accepted then the changes in the resource bindings of the nodes

are updated and the currentScore is updated with nextScore. If the currently accepted

solution’s score (currentScore) is less than or equal to the best solution’s score (bestScore),
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then the best Solution and score (bestScore) are updated with the currently accepted solu-

tion and its associated score (currentScore) respectively. If neither criterion was met, the

changes to the solution are not accepted (undone).

The temperature is updated by multiplying it by a predefined cooling rate. The Loop

is exited if the temperature is less than a predefined cutoff temperature. A final check is

done to see if the best solution is valid (i.e., it does not use too many registers/multiplexers,

or any multiplexers requiring more than 16 inputs). If no valid solution is found, then no

solution is returned. If a valid solution is found then the best solution is returned with the

associated area of that solution.

4.5 FPGA Architecture Generation

Note that the FPGA Architecture Generation was developed and designed by Jonathan

Phillips. Once the PLB algorithm has finished, then micro-architectures for the Alter and

Evaluate sub-systems in the CAEA pipeline are generated in terms of a simple hardware

intermediate format (HIF), which is essentially a structural representation of the micro-

architectures. These HIF files are then translated using a tool into VHDL files. Copy,

Adjust Temperature, Accept sub-systems, kernel controller, and memory multiplexing are

converted to synthesizable problem specific VHDL files. Some components used in these

VHDL files are created using Xilinx CORE Generator (i.e., integer divider, floating-point

comparator, floating-point divider, and integer to floating-point convertor).

A custom linear feedback shift register (LFSR) is used for random number generation.

The LFSR is initialized with a seed value (any value except all bits being a ‘1’). LFSR

works by shifting the register contents one bit position (either left or right) and inserting

a new bit in the empty bit position. This new bit is generated using a linear function of

the previous register contents. As an example, the feedback polynomial used for a 15-bit

random number is shown in Equation (4.6):

x15 + x14 + 1 (4.6)
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where xn is the bit value at the nth bit position in the LFSR (indexed from 1 to n).

As the target platforms for pSAKs are radiation hardened Virtex-4 FPGAs, which still

are not completely immune to single event upsets (SEUs) [26], there is a need for invoking

a reliable fault mitigation circuit design tool. Therefore the Xilinx TMR tool (XTMR) is

used to convert the design obtained into TMR (triple modular redundancy) form to offer

protection against SEUs. This is a fairly straightforward process, and hence the discussion

is out of scope of this paper.
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Chapter 5

Results

In order to compare the performance of the FPGA designs generated using our ap-

proach against using microprocessors, software versions of several SAKs was ported onto

a cycle accurate emulator of the PPC 750 [27]. This processor was chosen because it is

architecturally equivalent to a state of the art space based microprocessor (BAE Systems

RAD 750 [28]) that has a floating point unit and runs at 200 MHz. Three types of SAKs

for testing were choosen: data graph violations (dgv), graph coloring (gc), and traveling

sales person (tsp). For each type of SAK, problem/event sizes of 100, 300, and 500 were

done resulting in nine test cases. Note that all nine test cases are minimization problems

(i.e., trying to achieve the smallest score possible).

Table 5.1 shows detailed results of these test cases on the FPGA and PPC 750. Power

estimations for the FPGA were done using Xilinx’s XPower tool. The BAE RAD 750

requires 5 Watts of power [29]. Energy was obtained by multiplying the power with the

time required for the kernel to complete. Energy savings of 99% (on average) was obtained

for all the FPGA designs. Not surprisingly, the FPGA designs (despite being clocked up

to 115 MHz) also outperform the PPC 750 with a speedup of over 50x. This is due to

the pipelined nature of the architectures generated (pSAKs) and the inherent parallelism

offered by the FPGA. This makes FPGAs superb candidates for space-borne autonomous

mission planning and scheduling.

The final results of the sub-systems after pipeline balancing are shown in Table 5.2.

As the number of events to be scheduled increased, the gap between the latency of the

Accept sub-system and the other sub-systems in the CAEA is widened. Table 5.3 shows

the time it took the tool that implements the proposed architecture derivation methodology

and generate synthesizable VHDL files, the number of nodes that were being scheduled and
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Table 5.1: Device primitive usage, Time to complete, Power, and Energy required for the
FPGA based pSAKs compared to PPC 750 based SAKs

FPGA PPC 750 FPGA vs.
(200 MHz, 5 Watts) PPC 750

Problem LUTs FFs DSPs BRAMs Max Freq. Time To Power Energy Time To Energy Speedup
(MHz) Complete (Watts) Required Complete Required

(seconds) (Joules) (seconds) (Joules)
dgv100 14787 10224 15 165 105.9 0.153 2.454 0.376 8.85 44.2 57.8
dgv300 17529 12258 15 165 104.9 0.420 2.693 1.13 31.96 159.8 76.2
dgv500 22545 16983 15 165 108.4 0.663 2.866 1.9 43.28 216.4 65.3

gc100 14244 9948 15 165 112.9 0.091 2.652 0.242 8.22 41.1 89.9
gc300 19872 10572 15 315 71.3 0.325 3.083 1.003 24.57 122.9 75.5
gc500 24786 17493 15 315 70.3 0.529 3.209 1.699 40.97 204.9 74.4

tsp100 14100 10125 15 165 115.4 0.099 2.527 0.25 8.71 43.6 88.0
tsp300 24468 27165 15 165 111.7 0.468 2.784 1.304 25.11 125.6 53.6
tsp500 21897 21111 15 315 64.3 0.760 3.224 2.449 41.58 207.9 54.7

Table 5.2: Final latencies (measured in number of clock cycles) of the different sub-systems
for the nine test cases

Problem Copy Alter Copy/Alter Evaluate Accept Longest
Merged Latency

dgv100 88 88 56 88
dgv300 194 239 56 239
dgv500 292 390 56 390

gc100 51 43 55 56 56
gc300 118 126 56 126
gc500 168 202 56 202

tsp100 51 45 62 56 62
tsp300 197 284 56 284
tsp500 150 265 56 265

mapped for the Alter and Evaluate sub-systems, and the number of iterations of loops in

the PLB algorithm (Loop1 and Loop2 in Figure 4.1). The tool ran on an AMD Athlon 64

X2 Dual Core Processor 5200+ (2.61GHz) with one gigabyte of RAM. The longest the tool

took to complete was just under seven hours in the ‘tsp500’ problem.

Figure 5.1 visually illustrates the working of the PLB algorithm for the ‘tsp100’ prob-

lem. The latency is shown in the y-axis with a logarithmic scale. The x-axis markings

separate out the different iterations inside Loop1 and Loop2 and the initial solution gen-

erations of the Alter and Evaluate sub-systems. Latencies of schedules are recorded and

plotted (shown in between different x-axis marks (X#) in Figure 5.1) at intervals of 10%

of the total number of iterations of the Scheduler. There are times where the Scheduler

deviates away from a lower latency. This is because the Scheduler optimizes for area and
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Table 5.3: Time to run the Tool, Number of nodes for Alter and Evaluate sub-systems,
and the Number of iterations of loops in the PLB algorithm (Loop1 and Loop2 in Figure
4.1)

Problem Time to Number of Number of Number of iterations
run the Tool Alter Evaluate

(minutes/hours) nodes nodes (Loop1 + Loop2)
dgv100 13.76 m 7 2851 8
dgv300 1.28 h 7 8551 8
dgv500 6.38 h 7 14251 11

gc100 3.16 m 7 1651 4
gc300 27.34 m 7 4951 10
gc500 1.56 h 7 8251 11

tsp100 10.36 m 10 1783 9
tsp300 1.25 h 10 5383 10
tsp500 6.83 h 10 8983 10

not latency as discussed earlier in sub-section 4.3. In reference to the PLB algorithm in

Figure 4.1, x-axis marks X0 and X1 generate an initial solution for Alter and Evaluate

sub-systems, X2 − X4 iterate through Loop1, X5 − X9 iterate through Loop2, and X10

shows the final latencies after the PLB algorithm is complete.

Figure 5.2 shows intermediate scores for the Scheduler and Mapper when invoked for

the Alter and Evaluate sub-systems during x-axis marks X0−X2, and X4−X9 of Figure

5.1. Figure 5.2 also shows the maximum number of read ports used for the memory banks

during the schedule process (i.e., when the maximum number of read ports is violated, a

penalty of 100 is assigned as discussed earlier in sub-section 4.3). X3 and X10 are not

shown in Figure 5.2 because they do not use the Scheduler or Mapper.

To avoid staying at the local minimum given by the original solution, the Scheduler

and Mapper algorithms probabilistically accept worse solutions at the initial iterations of

the algorithms (which can be seen for the marks X5 and X6 from Figure 5.2). Slowly the

Scheduler and Mapper algorithms start moving towards the global minimum (i.e., worse

solutions are not accepted as often) as can be seen by the decreases in the scores during each

invocation. The Mapper was called only once for the initial mapping during X0 because

there was only one component of each operation type and hence component swapping was

not possible to generate more solutions. For x-axis marks X4, and X7−X9, the Scheduler
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Fig. 5.1: Working of the PLB algorithm on the tsp100 problem

Fig. 5.2: Performance of the Scheduler and Mapper for the tsp100 problem
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Table 5.4: Final scores and %Error averaged over 100 runs of the pipelined (pSAKs) vs.
non-pipelined (SAKs) versions for the nine test cases

Problem Non-pipelined Pipelined %Error
average score average score

dgv100 41.0 41.03 0.07
dgv300 72.8 74.74 2.66
dgv500 205.81 212.1 3.08

gc100 3.08 3.14 1.95
gc300 0.16 0.18 12.5
gc500 2.57 2.96 15.18

tsp100 2817.13 2844.81 0.95
tsp300 7500.32 7564.8 0.85
tsp500 9915.27 9995.62 0.8

did not return a solution; as such, the Mapper was not called.

To show that the quality of a solution by pipelining the behavior of a SAK is comparable

to the non-pipelined version, a 100 runs for each test case was run and then averaged the

score of the final solution for both versions (shown in Table 5.4). As the lab did not have

sufficient resources for acquiring the targeted radiation hardened FPGA (XQR4VLX200)

for testing, the functionality was emulated for the pipelined version in software to obtain

the results. For the non-pipelined version, the code for the SAKs was ran on the desktop

machine to get the results. The average error in the scores for these test cases was observed

to be 4.23%, with a maximum of 15% for one test case. However, even for this exceptional

test case, the solution provided by a pSAK is valid (but not as good). Therefore, pSAKs

can be a good substitute for SAKs, given the small difference in final solutions for most test

cases and the benefits of acceleration on FPGAs.



37

Chapter 6

Conclusions

In this thesis a methodology to design FPGA circuits specifically to accelerate SAKs

for space-borne applications is presented. This methodology uses a PLB algorithm that

leverages the structure of a hardware architecture template and invokes a Scheduler and

Mapper. A low complexity (O(1)) heuristic mapping algorithm (Mapper) was presented

to accurately estimate area usage for support units (i.e., multiplexers and registers). A

weighted sum of device primitives (WSDP) was used to calculate the relative weight of

components implemented on heterogeneous FPGAs and aid in the process of area estimation

during architecture exploration.

Energy required and time to complete various FPGA based pipelined SAKs with non-

pipelined SAKs implemented on a PPC 750 emulator (architecturally equivalent to the state

of the art BAE RAD 750 processor used in Spacecraft systems) was compared. Average

energy savings of 99% was observed with significant speedups of over 50x. This shows that

FPGAs are superb candidates for space-borne autonomous mission planning and scheduling.
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